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SYNOPSIS 

This article deals with data treatment problems associated with the estimation of the 
combined distribution of molecular weights and chemical composition in linear copolymers 
by size exclusion chromatography, when correction for instrumental broadening is consid- 
ered. Standard dual detection is assumed, i.e., the chromatograph is fitted with a “universal” 
detector ( a  differential refractometer) and a specific sensor to one comonomer only (a  UV 
spectrophotometer) . A real and a “synthetic” example (involving the analysis of a diblock 
styrene-butadiene rubber) are presented. Also, a propagation of errors study associated 
with the deconvolution operations is developed. It is concluded that the best calculation 
procedure is to first compute the combined distributions from the raw chromatograms and 
then correct such distributions for instrumental broadening. 0 1992 John Wiley & Sons, Inc. 

INTRODUCTION 

Size exclusion chromatography (SEC) is pres- 
ently the most important analytical tool for esti- 
mating the combined distribution of molecular 
weights and chemical composition in linear copol- 
ymers. This is because for many copolymers stan- 
dard dual detection (i.e., UV spectroscopy plus dif- 
ferential refractometry ) allows the determination of 
the instantaneous mass and average composition at 
each retention time.’-’’ Consider a linear copolymer 
with repeating units S and B .  Also, assume that 
while the UV spectrophotometer senses component 
S only the differential refractometer responds to the 
two comonomers. In the ideal case of no instrumen- 
tal or other broadening effects, the following detector 
equations may be writtena”: 

where i is the elution time or elution volume; A ( i )  , 

corresponding to the absorbance and refractive in- 
dex detectors, respectively; G (  i) is the mass-elution 
time distribution; p ( i) is the composition (weight 
fraction of S )  -elution time distribution; and k, us, 
and UB are constants that can be estimated by cali- 
bration. From eqs. ( 1) and ( 2 ) ,  the elution time 
distributions may be calculated as follows: 

( 4 )  

Equation ( 4 )  is numerically well conditioned be- 
cause it consists of two terms, each linear in the 
measurements n (i)  and A ( i )  . This is not the case 
of eq. ( 3 ) ,  however, where problems are to be ex- 
pected for low values of n (i)  . From eqs. ( 3 )  and ( 4 ) ,  
Garcia-Rubio lo developed the following expressions 
regarding the propagation of errors into the distri- 
butions due to variations in the measurements: 

n ( i) are the baseline-corrected chromatograms, 
v a r [ p ( i ) ~ =  [zr 
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var [ n ( i ) ] 
var[G(i)]  = 

v b  

where var [ ,] indicates time-varying variance of [ .] . 
Instrumental broadening correction is important 

when narrow-distributed copolymers are analyzed 
or when fine details of the combined molecular 
weight/chemical composition distribution are re- 
quired. In dual-detection SEC, this correction has 
been theoretically investigated in a previous publi- 
cation,’ and the main conclusions of that work were: 
( 1 ) the instrumental broadening functions asso- 
ciated to each chromatogram and to the uncorrected 
distributions G’( i) andp’( i) are all identical to the 
normal spreading function determined for linear 
homopolymers and mass detectors; and ( 2  ) instru- 
mental broadening correction involves independent 
deconvolutions of the original chromatograms prior 
to applying eqs. ( 3 )  and ( 4 )  (correction 1) or in- 
dependent deconvolutions of the elution time dis- 
tributions obtained after directly processing the 
chromatograms through the said equations ( correc- 
tion 2) .  This is illustrated in Figure 1, where a 
primed variable indicates distortion by instrumental 
broadening, while an unprimed variable indicates 
that it has been corrected for such distortion. 

Let x ( i )  indistinctly represent A ( i) , n ( i) , p ( i) , 
or G ( i ) .  The following discrete and stochastic 
equivalent of Tung’s equation” may be written to 
express the interrelationship between x ( i) and its 
broadened version x ‘ (  i)”: 

( i  = 1 , 2 , .  . . , n) (7 )  

where i and io both represent discrete times (or vol- 
umes); ( - c ,  d )  is a wide enough support that in- 
cludes all nonzero values of x’(i); h ( i ,  io) is the 
spreading function or normalized set of chromato- 
grams of hypothetical monodisperse homopolymers 
with different mean elution times io; and u, ( i) is an 
additive zero-mean measurement noise of known 
variance. In vectorial notation, eq. ( 7 )  may be writ- 
ten 

xf = H x  + v, ( 8 )  

where H is a matrix and x‘, x, and v, are column 
vectors. Several deconvolution techniques that allow 

the calculation of x from the knowledge of xf and 
H have been compared in Ref. 12. 

If the elution time distributions G( i) and p ( i )  
are known, then the global weight fraction of S in 
the copolymer ( 6 s )  can be directly calculated from 

(9) 

To obtain the distributions of molecular weights 
G( M )  , and of chemical composition G(p) , the cal- 
ibration M (  i) is further required. The transforma- 
tion of G(  i) into a continuous G(M) function with 
a linear M involves appropriate modifications of the 
heights in addition to modifications of the horizontal 
axis.” The number- and weight-average molecular 
weights are obtained from G ( M )  [or from G ( i) and 
M (  i ) ]  in the normal fashion, i.e. 

Note that if G(M) is utilized in eqs. (10) and (11) 
then equally spaced points along M must be consid- 
ered; and, compared to the direct calculation via G ( i) 
and M (  i) , larger errors are to be expected. 

This work aims at evaluating the calculation 
paths illustrated in Figure 1. Such paths are tested 
on a “real” and a “synthetic” example, correspond- 
ing to the analysis of a styrene-butadiene rubber 
(SBR) . For the synthetic example, two possible 
“measurement” models are proposed. A propagation 
of errors study for the corrections in Figure 1 is de- 
veloped. To this effect, eqs. (5) and (6  ) are used in 
series with a new expression that provides a crude 
estimation of the deconvolution errors. The errors 
related to the calculation of G ( M )  and p ( M )  from 
the elution time distributions are not investigated 
in this work. 

MEASUREMENT MODELS 

Synthetic examples with a priori known solutions 
are sometimes ideal to test alternative numerical 
procedures. To this effect, the measurement models 
must be relatively accurate compared to the inver- 
sion or correction procedures. This is verified in our 
case, where such models involve a series combination 
of the relatively simple multiplicative eqs. (1) and 
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Figure 1 Calculation of the mass-elution time and 
composition-elution time distributions. ( a )  Correction 1. 
(b) Correction 2. 

( 2) together with the well-behaved convolution op- 
erations of eq. (8). According to the order of such 
computations, the models represented in Figure 2 
are possible. 

In model 1, the zero-mean white noises uA ( i) and 
u,( i) are added to the noise-free (but distorted) 
measurements A”(  i) and n”( i) . In model 2, the zero- 
mean white noises up ( i) and UG ( i) are added to the 
noise-free (but distorted) distributions p ” (  i) and 
G“ ( i) to associate the additive noises with the con- 
volution models, as in eq. ( 7). The variances of uA ( i )  
and u,( i )  may be assumed time invariant and can 
be estimated from the baselines before and after the 
chromatogram peaks.13 The variances of up( i) and 
uc( i) may also be assumed time invariant and can 
be estimated from var [ uA ( i) 1 ,  var [ un ( i) ] , and eqs. 
( 3 )  and ( 4 ) .  

The nonlinear block of eqs. ( 1) and ( 2 )  generate 
path-dependent solutions and therefore different 
inputs are to be expected from each of the two mod- 
els. Inversion operations provide better results when 
they are performed in reverse order with respect to 
the synthesis procedure. Thus, correction 1 is ex- 
pected to perform better with the outputs of model 
1, and the same is valid for correction 2 and 
model 2. 

DECONVOLUTION ERRORS 

Assume that H is a square matrix in eq. (8). Since 
v, is zero-mean, an obvious estimation of x is ob- 
tained through 

= H-lx‘ (12) 

Deconvolutions produced via eq. ( 12) are in general 
unacceptably oscillatory but are optimal in the sense 
that Hi? constitutes a good recuperation of XI. Other 
deconvolution  technique^'^,^^ provide estimations 
that are closer to the “true” x function and are 
therefore preferable in practice. In what follows, a 
propagation of errors study is developed that is based 
upon the simple estimation of eq. (12 ) .  

Rewrite eq. (12) as follows: 
n 

~ ( i )  = c f ( i ,  i o ) ~ ’ ( i o )  ( i  = 1, 2 , .  . . , n) (13) 
io=l  

with 

F = H-l (14) 

wheref (i, io) is a generic element of resolvent matrix 
F. To investigate the effect on x ( i )  of independent 
variations o f f (  i, i o )  and x’( i), eq. (13) can be lin- 
earized by truncation of a Taylor’s expansion around 
some appropriate true or reference functions (rep- 
resented by subscript r )  , with the result 

n 

+ c  
&= 1 

with 

X”’ ( i0 )  ( i = 1 , 2 ,  . . . ,  n) (15) 

Model 1 , v,(il 

I I  I 

I ’  I 
I VJl) 

Figure 2 “Measurement” models for synthetic example. 
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From eqs. ( 13 ) - ( 15), one obtains 

and application of operator var [ .] to eq. ( 16) pro- 
vides 

var[?(i)l = [zf(io)lPvar[J(i,  io)]  
n 

io= 1 

n 

+ C [ f ( i ,  io)I5ar[x“’(io)I 
iO=1 

( i  = 1 , 2 , .  . . , n )  (17) 

But, var [ ?( i) ] = var [ x ( i) 1 ,  and similarly with the 
other difference variables. Therefore, eq. ( 17) results 
in 

( i  = 1,2 , .  . . , n )  (18) 

For the propagation of errors associated with the 
first step of correction 1, eq. (18) yields 

( i  = 1 , 2 , .  . . , n )  (19) 

( i  = 1 , 2 , .  . . , n )  (20) 

Similarly, for the second step of correction 2 the 
following may be written: 

( i  = 1,2 , .  . . , n )  (21) 

( i  = 1 , 2 , .  . . , n )  (22) 

In eqs. ( 19) and (20), var [A’( i)]  and var [ nf ( i ) ]  
could be estimated from a statistically significant 
set of measurements A’( i) and n’( i )  of a given co- 
polymer sample. In eqs. (21)  and (22),  var[p;(i)] 
and var [ G; (i)  ] could be obtained from eqs. (5) and 
(6), with A( i )  and n( i )  replaced by their corre- 
sponding primed variables. 

For estimating var [ f ( i ,  io) ] in eqs. ( 19)-( 22), 
remember that matrix F is related to the inverse of 
H .  The files of H contain the spreading functions 
at the different mean retention times io. Therefore, 
all elements of H are lower than unity, with the 
maxima in the diagonal. Since the transformation 
of H into H-’ involves a highly nonlinear combi- 
nation of all elements of H; the propagation of errors 
due to variations in the elements of H-’ is extremely 
complicated to develop. For this reason, the follow- 
ing approximation of H-’ will be utilized (see Ap- 
pendix ) : 

F = H - ~  z 21 - H (23) 

where I is the identity matrix. Application of var [ .I 
to each element of eq. (23) provides 

var[f( i ,  io)] E var[h(i, iO)] (24) 

where h (  i, io) is a generic element of H. Thus, one 
can replace var[f( i ,  io)]  for var[h(i, iO)] in eqs. 
( 19) - ( 22 ) . Ultimately, var [ h ( i, io ) ] will depend 
upon the detector errors and upon the techniques 
applied for the spreading function determination. 
Note that with the simplification of eq. (24) the 
truncation errors accumulated in the inversion of H 
are not contemplated in eqs. ( 19) - (22). Since eqs. 
( 13), ( 14), and (23) only provide crude estimations 
of x, then it is to be expected that the confidence 
limits determined through eqs. ( 19) - (22) and (24)  
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should constitute upper bounds for other more ac- 
curate deconvolutions  technique^.'^,'^ 

EVALUATION EXAMPLES 

Experimental Work 

Consider the analysis of a narrow-distributed di- 
block SBR that was synthesized anionically as fol- 
lows. First, the polybutadiene (PB)  block was pro- 
duced and a sample of such polymer was taken. 
Then, the styrene block was generated on the re- 
maining “living” polymer, with a nominal 20% mass 
fraction of styrene in the final copolymer. 

The calibrations that follow were employed in the 
synthetic as well as in the experimental example. 
All data analysis programs were written in FOR- 
TRAN 77 for a VAX 11/780 computer. 

A Waters Assoc. (Milford, MA) ALC/GPC 244 
size exclusion chromatograph was employed, fitted 
with the full set of (six) p-Styragel columns, a Model 
440 UV absorbance detector (set at 254 nm) , and a 
Model R-401 differential refractometer (DR) . The 
carrier solvent was tetrahydrofuran (THF) at 1 mL/ 
min. The two detectors produced signals in the range 
0-10 mV, and a 12-bit analogldigital converter 
translated such voltages into the range 0-4096. A 
Digital Minc 11 computer allowed the data acqui- 
sition. The digitalized data were then transfered to 
the VAX machine for baseline correction and re- 
maining data processing. According to the injected 
sample, electronic zeroes and gains were adjusted to 
provide large but nonsaturated outputs. Then, the 
chromatogram heights were multiplied by the set 
attenuations to refer all measurements to the same 
basis. In all cases, toluene was added as internal 
standard to correct for solvent flow deviations. 

Figure 3 ( a )  represents the final digitalized chro- 
matograms after rescaling with attenuations of 0.2 
and 4 for the UV and DR detectors, respectively. 
The UV signal is shown shifted to account for the 
time lag between sensors. 

For the detector calibrations, a polystyrene (PS) 
standard and the PB sample taken during the SBR 
synthesis were employed. The narrow PS standard 
(M, = 19400 g/mol) was chosen as a similar mean 
elution time as the copolymer and the PB sample 
ensured that its microstructure coincided with that 
of the butadiene in the copolymer. The calibrations 
were performed as follows: 

1. THF solutions (0.25 g/100 mL) of such ho- 
mopolymers were prepared. 

2. Chromatograms corresponding to injections 
of 25, 100, 250, and 500 pL of the said solu- 
tions were obtained and, as expected, the UV 
signal for the PB sample was practically null. 

3. The areas under the chromatograms were 
plotted vs. the injected polymer masses and 
the experimental points fell rather well on 
straight lines. The slopes of such plots pro- 
vided the sought calibrations, with the result 

k = 25,800 US = 272,300 UB = 223,500 (25) 

Replacement of eqs. (25) into eqs. (3)  and (4)  
determines that G ( i )  is practically proportional to 
n ( i )  while p (  i )  is essentially proportional to the 
signals ratio [ A  ( i ) / n (  i ) ]  . 

The instrumental broadening calibration was ob- 
tained by the recycle method proposed by Alba and 
Meira“ and employing the previously mentioned PS 
standard. Due to the narrow elution range of the 
copolymer chromatograms, the instrumental broad- 
ening was assumed uniform; the final spreading 
function h ( i )  is represented in Figure 3 ( b )  . Note 
that: ( 1 ) The breadth of h( i )  is similar to that of 
the measured chromatograms, thus justifying the 
broadening correction; and (2)  h( i )  is positively 
skewed and therefore small shifts in the averages 
will be introduced by the convolution /deconvolution 
operations. 

The main calibration was performed with sets of 
commercially available narrow PS and PB stan- 
dards. Their peak molecular weights, which we shall 
call MS and MB, respectively, were obtained from 
(M,M,) 0.5.  The individual calibrations resulted in 

log[ Ms( i ) ]  = -0.1821i + 12.8219 (26) 

lOg[Mg(i)] = -0.1821i + 12.5202 (27) 

and the copolymer molecular weights M ( i )  were 
found by the following interpolation ‘: 

Note that with eq. (28) the copolymer molecular 
weights depend upon p ( i )  . 

Consider the estimation of the (constant) vari- 
ances of the zero-mean noises va( i ) ,  v,,(i), vp(i), and 
uc(i) required for implementing the models of Figure 
2. In this case, uniformly distributed “white” random 
sequences were synthesized to simulate the elec- 
tronic noise of detectors and interfaces, while the 
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Figure 3 
( c )  Final molecular weight distributions. ( d )  Final composition distributions. 

Experimental example. ( a )  Measured chromatograms. (b )  Spreading function. 

low-frequency baseline drifts were not included in 
the simulation. The noise variances were estimated 
as follows: (1) linear baselines were determined by 
least-squares fit of the observed signals before and 
after the chromatogram peaks; ( 2 )  noises vA ( i )  and 
v,( i) were calculated from the deviations between 
measurements and the fitted baselines; and ( 3 )  
noises v, ( i )  and vG( i) were obtained by processing 
vA ( i )  and v,( i) through eqs. (3 )  and ( 4 ) .  The final 
results are 

var[vA(i)] = 0.5 var[v,(i)] = 130 

var[u,(i)] = l X 1 0 - 3  v a r [ v ~ ( i ) ] = 4 X 1 0 - ~  (29) 

For the deconvolution errors, and in relation to 
eqs. ( 19 ) - ( 23 ) , the following was considered: 

1. [ A ’ (  i)]? and [ n’( i)], were assumed equal to 
the measurements A’( i) and n’( i), respec- 
tively. 

2.  [ ~ ’ ( i ) ] ,  and [G’(i)], were obtained by pro- 
cessing A ’ ( i )  and n ’ ( i )  through eqs. ( 3 )  
and ( 4 ) .  

3. The elements [ f (  i, & ) I r  were taken from [F], 

4. var [ h( i, io) ] was assumed constant Vi, io and 
calculated from a standard deviation esti- 
mated as 7.5% of the maximum of h ( i )  . 

5. The time-varying variances of A’(  i), n’( i), 
p’ (  i) , and G‘( i) were estimated assuming er- 
rors proportional to their corresponding 
variables, 13,14 i.e. 

= H-1. 

var[x‘(i)] = c [ x ’ ( i ) 1 2  ( c  = 1) ( 3 0 )  

For the deconvolution operations, the technique 
based upon the Kalman filter l3 was employed. This 
technique involves the apriori adjustment of a time- 
varying filter gain var [ x (i) ] /var [ v, (i) ], where x ( i) 
is the “true” (but unknown) solution and v,(i) is 
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the additive noise. The gain was adjusted as follows. 
The numerator was estimated from the approxi- 
mation x ( i )  E xf  ( i )  , which implies 

var[x(i)]  = c[x’(i)l2 ( c  = 1 )  (31)  

The (constant) denominator gain was chosen with 
the criterion of providing reasonable recuperations 
of the original curves via HzZ while simultaneously 
rejecting negative peaks at the distribution ends. The 
final results are 

var[uA(i)] = 1 x lo4 var[u,(i)] = 5 x lo6 
var [ up( i) ] = 5 X var [ UG( i)] = 1 X (32)  

The values in eqs. ( 32) are higher than in eqs. ( 2 9 ) ,  
and this is reasonable bearing in mind that eq. (31 ) 
produces overestimations of var [ x ( i )  ] in the tails 
and underestimations at the peaks. To avoid nega- 
tive oscillations at  the tails, the overestimations of 
var [ x ( i) ] must be compensated with increased val- 
ues of var [ u,] . In the experimental example, the 
increment of var [ u,] is further justified because the 
low-frequency baseline drifts must also be compen- 
sated. 

Lastly, and as an independent check of the global 
copolymer composition, proton nuclear magnetic 
resonance (NMR) was employed. The following 

500. 

0. 

1.x lo4 

0. 

Correction 1 

mass fractions were obtained styrene, 26%; 1,2 bu- 
tadiene, 10%; 1,4 butadiene (cis + trans), 64%. Rel- 
atively large deviations are to be expected in these 
values, however, due to errors introduced during the 
discretization of the analog NMR charts. The sty- 
rene content is well above the nominal 20% value. 

Experimental Example 

Measurements A’(  i) and n’( i) of Figure 3 ( a )  were 
processed according to the calculation paths of Fig- 
ure 1. Figure 4 illustrates the intermediate elution 
time distributions together with their expected +2a 
limits. The first step of correction 2 [Figs. 4 (e )  and 
( f ) ]  provides a solution that does not include 
broadening correction. 

From Figures 4(c)  and ( d ) ,  4(g)  and ( h ) ,  and 
4 ( e )  and ( f ) , the molecular weight distributions 
G, ( M )  , G2 ( M )  , and G’, ( M )  , respectively of Figure 
3 ( c )  were obtained by means of eqs. (26)  - (28)  and 
an appropriate “continuization” procedure.” To 
smoothen calculation errors, the composition dis- 
tributions represented in Figure 3 ( d )  were obtained 
by first finding the cumulative distributions C G ( p )  , 
then fitting smooth curves to such functions, and 
finally differencing to obtain G ( p )  . In Table I, the 
final averages are compared. For such calculations, 
negative values were assumed zero and compositions 

Correction 2 

1. 

0. 

0.04 

0. 

1 r f )  I 

.. ,-J--~-l 0.c 
Figure 4 
1 (a-d) and Correction 2 (e-h). The dotted lines indicate +2a limits. 

Experimental example. Calculation of elution time distributions via correction 
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Table I Experimental Example: Comparison 
of Estimated Averages 

higher than unity were limited to that upper bound. 
The following comments can be made: 

No Correction Correction 1. The two correction paths produce similar 
Correction 1 2 molecular weight distributions and averages 

but considerably different composition dis- 
tributions and averages. As expected, the 
highest polydispersity (M,/M,) is observed 
when instrumental broadening correction is 
not included. 

M" 19,100 19,400 18,900 
MW 22,700 21,800 
MJM. 
PS 0.3079 0.2982 0.2440 

20,700 
1.19 1.12 1.10 

Model 1 

r I 

"Measurements" Model 1 + ~ ~ ~ 0 '  ~ ~ , x , ~ ~ ~  

40. 50. i(rn1) 40 50. i(rn1) 

Model 2 
AI2(i) 

0 

Figure 5 Synthetic example. (a ,  b )  Proposed elution time distributions. (c, d )  Inter- 
mediate result of model 1. (e, f )  Intermediate result of model 2. ( g ,  h )  Final measurements. 
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2. Obvious errors in p1 ( i )  appear a t  both ends 
of this distribution. In correction 2, the noisy 
ends of pz  ( i )  [Fig. 4 ( g) ] are numerical ar- 
tifacts that can be discarded since G2 ( i )  is 
practically zero at those ends. 

3. p1 (i)  and p z  ( i) both indicate composition 
variations that are more pronounced than in 
p i  ( i )  . The low-molecular-weight copolymer 
fraction is pure (or almost pure) PB, while 
the high-molecular-weight fraction has a 
much higher styrene content. This is reason- 
able bearing in mind that deactivation of liv- 
ing ends along an anionic polymerization 
such as described is practically unavoidable. 

4. The independent NMR measurement (Is, 
= 0.26) is intermediate between the two so- 
lutions, but the nominal concentration (ac- 
cording to the synthesis technique) is closer 
to the global styrene content via correc- 
tion 2. 

Synthetic Example 

Consider the previously discussed calibrations but 
with the retention time distributions p ( i )  and G(  i) 
proposed in Figures 5 ( a )  and 5 ( b ) .  The corre- 
sponding averages are indicated in the second col- 
umn of Table 11. 

Figures 5 ( c )  and ( d )  illustrate the results of 
model 1 before addition of noises uA(i) and un(i), 
while Figures 5 ( e )  and ( f  ) represent the first step 
of model 2. In Figures 5 (9)  and ( h )  , all final syn- 
thetic measurements are shown together. While the 
“refractrometer” signals practically coincide, ap- 
preciable deviations are observed in the “absor- 
bances.” If p ’ ( i )  and G ’ ( i )  are directly calculated 
from “measurements” A ;  ( i )  and n; (i), then the 
averages indicated in the third column of Table I1 
are obtained. 

Corrections 1 and 2 were applied to the two sets 
of synthetic measurements and the four solutions 
of Figure 6 and Table I1 were produced. In all plots, 
the “true” distributions are shown for comparison 
and the f 2 a  limits are indicated with dotted lines. 
Two subindexes characterize each estimation: the 
first digit indicates measurement model and the 
second correction path. 

In all cases, similar mass-elution time distribu- 
tions are recuperated. The composition-elution time 
distributions are all oscillatory (especially a t  the left 
end discontinuity), but model 2 + correction 2 seems 
to provide the best overall performance. The aver- 
ages are all within f 6 %  of their true values. 
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Model 1 i- 
Correction 1 

Model 2 + 
Correction 1 

Model 1 -k 
Correction 2 

Model 2 + 
Correction 2 

Figure 6 Synthetic example: The four solutions. 

DISCUSSION 

Two data treatment procedures were evaluated on 
relatively demanding examples since narrow poly- 
mers with broad composition distributions were in- 
vestigated. 

The structure of eqs. ( 3 )  and ( 4 )  indicates that 
greater errors are expected in p (  i) as compared to 
G (  i) , and this was verified in the proposed examples. 
In particular, large deviations were observed at the 
ends of p ( i )  that can greatly distort the final com- 
position distribution G ( p )  . Such deviations also af- 
fect the global composition and (indirectly) the av- 
erage molecular weights. The molecular weight av- 
erages proved relatively insensitive to variations in 

p ( i) , however, because (for SBR) the individual 
calibration curves are relatively close together. 

A propagation of errors study for a deconvolution 
technique such as the Kalman filter13 is extremely 
difficult to develop; for this reason, a highly simpli- 
fied problem was attempted. In all cases, the cal- 
culated errors bands proved reasonable and in accord 
with the numerical results. Since the final results 
are highly dependent upon the deconvolution op- 
erations, a careful tuning of these algorithms is rec- 
ommended. In this work, the Kalman filter was ad- 
justed after relatively fundamental considerations 
concerning the noise statistics. This would not be 
required in standard practice, however. The normal 
tuning procedure involves a trial-and-error adjust- 



ment of the c factor in eq. (31 ) until a good match 
is attained between observed and expected “inno- 
vations” sequence.13 

In the synthetic example, the calculated distri- 
butions and averages proved relatively independent 
of the calculation path. This is fortunate because 
the proposed corrections and measurement models 
are all path dependent and at this point it is im- 
possible to decide which of the correction paths is 
theoretically preferable. 

The broadening correction of the raw data (pro- 
posed in correction 1) may appear a priori as more 
“reasonable.” However, correction 2 seems all in all 
preferable from the investigated example. The spu- 
rious oscillations generated by correction 2 at the 
ends of the composition-retention time distribution 
are clearly artificial since no mass is present at such 
ends. A possible explanation for the better perfor- 
mance of correction 2 with respect to correction 1 
is that in this last case valuable information may be 
lost in the deconvolution operation. 

The authors extend thanks to H. Aimar, L. H. Garcia- 
Rubio, and J. Vega for useful discussions; to J. Carella for 
provision of the polymer samples; and to CONICET and 
the Universidad Nacional del Litoral (Argentina) for fi- 
nancial support. 

APPENDIX 

To prove eq. ( 2 5 ) ,  let us first define the spectral 
radius of a square matrix C as the maximum of I XI I ,  
. . . , I A, 1 ,  where XI, . . . , A, are the eigenvalues of 
C .16 Neumann’s lemmaI6 states that if the spectral 
radius of C is lower than unity then ( I  - C)-’ exists; 
furthermore 

If H represents the spreading function matrix, 
then one can replace C by ( I  - H )  in eq. ( A . l ) ,  
yielding 

k 

[ I  - ( I  - H)]-’ = lim C ( I  - H)’ (A.2) 
k-co i=o 

and therefore 

H-’ = ( I  - H)O+ ( I  - H)’ 

+ ( I - H ) 2 +  * - *  (-4.3) 
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The high-order terms of eq. (A.3) tend rapidly to 
zero. Thus, considering only the first two terms in 
this series one may write 

H-’ z I + ( I  - H )  = 21 - H (A.4) 

For eq. (A.4) to hold, the spectral radius of ( I  - 
H )  must be lower than unity. It can be numerically 
verified that this is always the case for these “di- 
agonally dominant” types of matrices. 
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